AuLtA LVANS

https://wizardzines. com

git cheal cheet

getting started
start a new repo:
git init
clone an existing repo:
git clone $URL

Know where you are

git status

prepare to commit

add untracked file:
(or unstaged changes)
git add $FILE

add ALL untracked files
and unstaged changes:
git add .

choose which parts of a
file to stage:

git add -p
delete or move file:

git rm $FILE
git mv $OLD SNEW

tell git to forget about a
file without deleting it:
git rm --cached $FILE
unstage everything:
git reset HEAD

move between
branches
switch branches:
git switch $NAME OR
git checkout $NAME

create a branch:
git switch -c $NAME QR
git checkout -b $NAME

list branches:
git branch
delete a branch
git branch -d $NAME

force delete a branch:
git branch -D $NAME

list branches by most
recently committed to:

git branch
--sort=-committerdate

diff commits

show diff between a commit
and its parent:

git show $COMMIT_ID

show diff between a merge
commit and its merged parents:
git show --remerge-diff
$COMMIT_ID
diff two commits:

git diff $COMMIT_ID $COMMIT_ID

jusf show diff for one file:

git diff $COMMIT_ID $FILENAME

show a summary of a diff:

git diff $COMMIT_ID --stat
git show $COMMIT_ID --stat

look at a branch's
history
log the branch
git log main

show how two branches
relate to each other:

git log --graph a b

one line log:
git log --oneline

diff staged/unstaged changes

diff all staged and
unstaged changes:

git diff HEAD
diff just staged changes:
git diff --staged

diff just unstaged changes:
git diff

trash your changes A

delete all staged and
unstaged changes to one file:

git checkout HEAD $FILE

delete unstaged changes to
one file:

git checkout $FILE

delete all staged and
unstaged changes:

git reset --hard
delete untracked files:

git clean

"stash" all staged and
unstaged changes (pretend 1
might get them back later)

git stash

make commits

make a commit:
(and open a text editor
to write the message)

git commit

make a commit:

git commit -m 'message’
commit all unstaged
changes:

git commit -am 'message’

code archaeology

show who last changed
each line of a file:

git blame $FILENAME

show every commit that
modified a file:

git log $FILENAME

find every commit that
added or removed some
text:

git log -S banana

configure git
set a config option:
git config user.name 'Ju%ia’
n&me valve
see all possible config options:
man git-config

set option globally:
git config --global ...

add an alias:
git config alias.st status

edit history

A\

"undo" the most recent commit
(keep your working directory
the same):

git reset HEAD*

squash the last 5 commits
info one:

git rebase -i HEAD""*"7%

(and change "pick" to
"fixup" for any commit 1
want to combine with the
previous one)

undo a failed rebase:
®git reflog BRANCHNAME
®do a painstaking search
@git reset --hard $COMMIT_ID
change a commit message:
(or add a file you forgot)
git commit --amend

combine diverged branches

how the branches look before:

[#] +—— main
Mgkl
(@] —banana

-» combine with rebase:
git switch banana
git rebase main

banana
o’

-»combine with merge:
git switch main
git merge banana
git commit

banana
-»combine with squash merge:

git switch main
git merge --squash banana
git commit

E3 «main
[OH*] L7

banana

add a remote

git remote add $NAME $URL

push your changes

push the main branch
to the remote origin:

git push origin main

push a branch to the remote
origin that you've never pushed
before:

git push -u origin $NAME

push the current branch to
its remote "tracking branch":

git push

force push: A\
git push --force-with-lease

ush tags:
P git étsh --tags

bring a branch vp to date
with another branch
(aka "fast-forward merge")

main banana

L
IHA=HoHz)~
git switch main
git merge banana

banana

[THFEHHEE main

pull changes

fetch changes:

(but don't change any
of your local branches)

git fetch origin main
fetch changes and then merge
them info your current branch:
git pull origin main OR
git pull
fetch changes and then
rebase your current branch:
git pull --rebase

fetch all branches:
git fetch --all

git has 17 million

options
but this is how I use it!

important git files

local git config:
.git/config

global git config:
~/.gitconfig

list of files to ignore:
.gitignore

restore an old file A

get the version of a file
from another branch or
commit

git checkout $COMMIT_ID $FILE
OR

git restore $FILE
--source $COMMIT_ID

copy one commit onto
another branch
before:

E —Mmain
Eﬂ_lld:a—ll
@Z\¢banana
git cherry-pick $COMMIT_ID

after:
main

[#¥— @
[H*]

{Z7\e—— banana

ways to refer to a commit

every time we say $COMMIT_ID,
you can use any of these:
«a branch main

= a tag vo.1

«a commit 1D 3e887ab

a remote branch origin/main
% current commit HEAD

%3 commits ago HEAD**%

% 3 commits ago HEAD~3

